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Summary. The origins of the coupled cluster method are traced back to the 
necessity of dealing with the hard core potentials of nuclear physics. The 
exponential structure of the wave function follows from very general arguments: 
using the Bargmann representation it appears as solution of a simple differential 
equation. Or, using plausibility arguments, the virtual excitations out of the 
Fermi sea naturally show up as exponentials. The unresolved convergence 
problems are discussed. I believe that the title of this talk gives me some freedom 
in the selection of the topics I may speak about. Thus I chose to say only very 
little about the history and more about the physical background which with 
necessity lead to the coupled duster (CC) method. Just this necessity will be a 
central point of my talk. Indeed I shall make some remarks, ranging from 
plausibility arguments to rigorous proofs, concerning the structure of ground 
state wave functions. I shall say very little about open shell systems. Here the CC 
techniques have been developed much later, are less unique and my own 
contributions are relatively few. 
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1. Perturbation theory and Gell-Mann Low equation 

It all started in the mid fifties when people did believe that it should be possible 
and that it was highly time to solve the nuclear many body problem. "Possible" 
since computers at that time became a standard outfit of universities. Further- 
more, at that time two body forces became available, derived from two nucleon 
scattering experiments. Also one had a rather successful shell model which 
seemed to overcome the first difficulty that - contrary to the situation in atoms 
and molecules - there is no defining central field on which to build an indepen- 
dent particle description. Experimental phase analysis allowed (and even today 
still allows!) for many different internucleon potentials. Nevertheless all of them 
have a long ranged attractive tail (due to the pion exchange, leading to a range 
of the order of the Compton wave length of the pion, that is about 1.5 Fermi) 
and a short ranged repulsive core (due to exchange of heavier mesons, with a 
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range of the order of 0.5 Fermi), which may even be infinite ("hard core" 
potential). This practically rules out a Hartree-Fock approximation since the 
potential matrix elements become very large or infinite. This was the second 
problem encountered. Using nuclear matter as a model (to have simple plane 
waves as s.p. basis) this problem was solved by Brueckner [ 1]: he summed up all 
"upgoing" ladder diagrams as shown in Fig. 1. 

This is equivalent to solving by iteration the equation: 

G =  V +  I"QG (1) 
e 

for the "G-matrix", obtaining: 

G = V + V  Q-Q- V+ V Q-- V Q V + . . . .  (2) 
e e e 

Here Q is a projection operator excluding intermediate downgoing (hole) lines 
and e is an energy denominator. The correlation energy due to this ladder sum 
is ae  E<VlV21GIv, 2>, where vl,2 label occupied states. In a next step 
Goldstone [2] rewrote this as a ("Bethe-Goldstone") equation for an amplitude 
Z2: 

(T1 -'~ T2 - Ev 1 - -  Ev 2) Iz=lVlV=> -- -QVlz2lvlv2>. ( 3 )  

Here evl 2 are single particle energies for occupied states. The G-matrix is 
obtained' simply as 

Ialv, v=> = I Vz l , (4) 
From this it is rather evident that summing up the ladder amounts to solving a 
(Schr6dinger type) differential equation with the boundary condition that the 
function must vanish inside the hard core (if any). This boundary condition is well 
known to have a solution. There is only the technical problem of dealing with the 
operator Q, which nowadays is routine. Even in the most sophisticated calcula- 
tions for hard core or similar problems this approximation typically serves as a 
starting point. Brueckner already did improve on it by incorporating some self 
energy terms: he did replace the single particle energies by 

<v, <v,vlvx=lv, v>. 
v v 

Thereby the Bethe-Goldstone equation did become a nonlinear equation to be 
solved self consistently. Clearly the hole lines have been "dressed" by adding this 
term, see Fig. 2. 

The experts know that this is just a subset of the terms in the two body 
equation of the CC method. I have written this equation in pictorial form in 
Fig. 3. (The dash-dotted line indicates the energy denominator.) Here 

x=l , v=> = lv, v=> -+- s=lv, v=> 

Fig. 1. Brueckner ladders 
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Fig. 2. Brueckner ladders with hole line insertions 

4-... 
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Fig. 3. S 2 equation generating Brueckner ladders 

is used. The first part is the determinant of two single particle states, the second 
one is the well-known $2 amplitude. Inside the hard core the boundary condi- 
tion: 

<x, x2lS=lv, v=) = -<x,x=lv,  v=> 

has to be observed. The first two terms on the right hand side of Fig. 3 
generate the ladders and the last one dresses the hole lines. 

At the same time Goldstone did prove the linked cluster theorem by 
carefully inspecting the perturbation series named after him, although Brueck- 
ner had found before that the lowest order unlinked terms cancel. As seen from 
today one should be aware of the fact that the linked cluster theorem is 
"trivial" because (for extended systems) the energy contributions individually 
are proportional to the particle number N and thus products of n such terms 
go as N n. Shortly afterwards Hubbard [3] and a little later Hugenholtz [4] did 
establish the exponential structure, again by skilful analysis of perturbation 
theory. I shall not go into any technical details, mainly because I never 
managed to arrive at a simple insight using this approach. Indeed, from Fig. 3 
nobody will recognize a pr ior i  that it is generated by the usual manipulation 
with exp( - S ) H  exp S. Only if one s tar ts  with the exponential one may derive 
those terms a poster iori .  

At this place I want to draw your attention to a much earlier paper by 
Gell-Mann and Low [5] which entered into some textbooks on quantum field 
theory, e.g. [6]. As far as I know it is indeed the first one to arrive at an 
exponential form. This is based on the standard time dependent perturbation 
theory of quantum field theories, using the interaction representation. A bound 
state wave function and energy turns out to be: 

v(o,  - m) 1, o ) ( olHV(O, - I, o ) 
] ~ U o ) = ( ~ - ( ~ Z ~ o ) _ _  _ _  and E =  (~o[U(0,_ov)]4~o) . (5) 

Here U ( 0 , - ~ )  is the time development operator in the interaction repre- 
sentation for the time - ~  to 0 and ~o the bare vacuum in field theory or 
the Slater determinant in a many body system. Now it is well known that U 
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can be expanded as: 

(_i)n "' j~ 0o T[V(tl)V(t2) . . . . . .  V(tn)] dtl dt2 dt,, 

: T exp ( f ~  dt V(t)). (6) 

T is the usual time ordering operator. The perturbation series (6) represents 
modified Feynman diagrams, the non-covariant versions of which are the 
Goldstone diagrams. In field theory it is well known that the terms are linked: The 
denominator (~01U(0, - oo)1~o) just cancels the unlinked vacuum-vacuum 
diagrams occurring in the numerator. I mention in passing that there is no proof 
that this wave function really exists, although there should be little doubt for finite 
many body systems. There is still some way to go to the exponential form as used 
in the CC method, but dearly it is buried in this expression. 

Returning now to history, the next big step was a short paper by Fritz Coester 
[7]. Knowing Hubbard's paper he used the exponential form as a vehicle to derive 
the linked cluster structure, had the idea to compute amplitudes directly instead 
of perturbation terms and he obtained formal equations for them. This was the 
time I myself appeared at the scene. If I remember correctly we then realized that 
the Bethe-Goldstone and the corresponding three body ("Bethe-Fadejev") 
equations were embedded in this set of equations. Years later Liihrmann and myself 
[8] managed to derive rigorously the n-body equation and got the insights needed 
for dealing with hard core potentials in arbitrary order. From then on it was mainly 
technical work, where John Zabolitzky was the most prominent figure. Ray Bishop 
will talk about the applications [9] and thus I may stop here with history. 

Except for one curious fact: for about ten years nobody in the nuclear physics 
community did care for the CC method. People were partially right since the 
computers at that time were just too small to make use of more than the lowest 
order approximations. Thus nobody did care for the strength - and the beauty - 
of the method, namely the systematics behind it and the unique truncation 

schemes it therefore suggests. Indeed for hard core potentials there is practically 
no freedom in truncating the set of CC equations! It was thus a happy surprise 
to me as I opened a big parcel with reprints sent to me by Jiri Cizek in the mid- 
1970s telling me that the chemist not only had read our papers, they even were 
daring enough to try some applications. Indeed Cizek was the first one to make 
explicit the approximate CCM equations and to use them for chemistry problems 
[11]. The first ab initio calculations were done by Paldus et al. [12]. Since this is 
not the topic of my talk, I don't go into any more details. Instead, I refer to 
Bartlett's review [13] and papers presented at this workshop. As much as the 
chemists must be praised for occasionally looking into nuclear physics journals, 
as much I have to regret that nuclear physicists (including myself) did not care 
to search in the other direction. This hasn't changed much, especially the particle 
physicists still believe that the higher the energy they are dealing with the lesser 
they need to look down to the low energy people. 

2. Bargmann space and exponential form 

Now let me illustrate why history had to take this course, that is why one had 
to arrive at the CC method. Strange as it may be, in spite of the many successes 
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of the coupled cluster method there is still a widespread belief that the underlying 
exponential structure is something artificial, accidental or even an approximation 
only. This is why I want to make clear that this feature is extremely natura l -  
even necessary- on a very fundamental level, not necessarily connected with 
many body theory. 

I am using first some old arguments put forward by Fritz Coester and Rudolf 
Haag as far back as 1960 [10]. I modify and extend this a bit since it was originally 
formulated for (bosonic) quantum field theories and at that time the Bargmann 
space was not known to the physics community. For the moment I restrict myself 
to bosons. Assume that on the one hand everything may be represented by the 
Fock space with the usual creation and annihilation operators a~ and aj and a bare 
vacuum ] Oo). Actually this is not necessary but helps to relate the following points 
to more familiar things. On the other hand, in the Bargmann representation these 
operators are replaced by complex numbers as follows: 

a 
a ~ z i  and a s ~ - ~ O .  (7) 

The analytic functions of z l z 2 . . . f ( z l ' z 2 . . . )  (abbreviated as f (z))  generate a 
Hilbert space with the scalar product: 

dzi d~, i 

The functions: 
(a'i)"' ~ . z7 .i 

Inln2.. .  > = f1 ~ [,po) ~ H (9) 

define an orthonormal basis in this space. Clearly they are counterparts of Fock 
space states with ni particles in the state labelled by i. Making the assumption that 
the given Hamiltonian H has a (discrete normalizable) ground state 7'0, it can be 
shown that an arbitrary state can be written as 

~(z) = G(z) 7Jo (z). ( 1 O) 

This equation is trivial, since for bosons the ground state has no zeros. 
But then also the state created by a~ must have this feature: 

ai 71o ~ ~zi ~o (z) = Li (z) ~o (z), (11) 

the solution of which is: 

7%(z) = exp S(z) with L;(z) = ~ S(z). (12) 

Here a general S(z) is a superposition of polynomials: 

S(z) = ~ S,(z) (13) 
n 

with 
1 

S n ( z )  = E -~, S n ( i l '  i2 . . . .  ) Z i l Z i 2  " ' "  Zin 
" ,  , . . . :  1 1 t2 I n 

l f f  • nt dxl . dx,, S , (x l  . . .  x ° ) z ( x l ) . . ,  z(x,),  (14) 
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where in the last step we did switch to the coordinate representation. Clearly this 
is the Bargmann space analogue of the exponential form as used in the coupled 
cluster method. This result is quite general, and valid even for a one body 
problem, It is remarkable but not at all surprising that the exponential form was 
so powerful even for the anharmonic oscillator [14]. 

We now turn to extended many body systems. Assume that the Hamiltonian 
is of the usual form with interactions of finite range. Then we may divide the 
space into (large) cells. To each cell belong operators a(k)t(x) and a(k)(x) 
(variables z(~)(x)) restricted to the cell k. The Hamiltonian becomes 

H ,~ ~ Hk, (15) 
k 

and the wave function ~o becomes a product 

where 

Hence 

7% (z) ,~ I-[ 7Jo (z(k)), (16) 
k 

z(k)(x) = Z(X) if X in the cell k, = 0 otherwise. (17) 

s(z) = y~ S(z(~)). (18) 
k 

Clearly the exponential form was essential for this "cluster property" of the wave 
function. Then Eq. (18) implies that S . ( x l . . .  x .)  tends to zero with increasing 
distance between any points xi. This connection between cluster structure and 
exponentials has a long history in statistical mechanics. The well-known Ursell- 
Mayer linked cluster expansion of the partition function uses the same ideas 
about the asymptotic behaviour of multidimensional fields. 

Let me now turn to fermions. If  one so wishes one may combine Bargmann 
space with Grassmann variables to take care of the anticommutating operators. 
But this would require going deeper into the underlying mathematics. Thus I 
shall present a more modest approach. Let ~o be the (Slater) determinant of 
occupied states and A,.* and Ai the creation operators with respect to a suitably 
chosen ~0 as "vacuum". Then without loss of generality the ground state wave 
function can be written as: 

7% (A *) = F(A *)¢'0. (19) 

Here F(A t) indicates a functional of the creation operators A ~ with even number 
of such operators (with numbers of holes equal to number of particles because 
of particle number conservation). We show first that an arbitrary state can be 
written as: 

~(A*) = G(A +Wo. (20) 

One has to convince oneself that in Fock space one may generate an arbitrary 
vector out of ~o by creation operators alone. This always is possible since one 
easily may remove any undesirable particle by applying the corresponding 
creation operator, using a~ .2 = 0. But then also: 

6F(A *) 
Ai~Po = Li(A*)~Po = [Ai, F(A*)]~o - 6 A ~  q)o = L~(A*)F(A*)~o, (21) 
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with the solution: 

F(A *) = exp[S(A *)], L, (A ,) _ 6S(A *) 6A*~ ' (22) 

as desired. With suitable modifications all further conclusions can be taken over 
from the bosonic case. 

3. Fermi sea and exponential structure 

Let us now turn to simple plausibility arguments leading again to the exponential 
form, arguments which have been put forward before [ 15]. We want to determine 
the ground state wave function ~o and energy E of a system of N fermions, say, 
for the lowest eigenvalue E of the N-fermion system. For ground states of closed 
shell systems an important part of the wave function is the Slater determinant of 
occupied states 1~o). The underlying picture here is of course that each particle 
moves independently in a potential well produced by (the nucleus in the case of 
atoms and) the averaged motion of the other particles, which themselves 
otherwise move independently except for the restriction of quantum statistics 
imposed in this case by the Pauli principle. Due to the Paufi principle each 
electron is in a different single-particle eigenstate of this mean potential and the 
N lowest single particle s ta tes-  representing the "Fermi s e a " - a r e  filled from 
below as indicated in Fig. 4a. 

This Slater determinant of the N lowest single particle wave functions (the 
occupied states) may for instance be determined by the Hartree-Fock varia- 
tional principle. But of course this picture of dynamically independent motion is 
not complete, since the particles will in general interact among themselves and 
hence cannot move independently. We now attempt to correct for these dynamic 
correlations systematically. The first thing one may imagine happening is that 
two particles mutually interact, thereby lifting themselves out of the Fermi sea, 
so that after the interaction both are in unoccupied orbitals, see Fig. 4b. This 
process will be described by some quantum-mechanical amplitude or equiva- 
lently by an operator $2 which acts on the Fermi sea wave function [~o> to 
produce the wave function S2J~0 > describing two particles outside the Fermi sea 
(and consequently two "holes" inside it) and all remaining N -  2 particles in 
their previous orbitals. But, it may also occur for example that two pairs of 
particles do this completely independently, as illustrated in Fig. 4c. This process 
is clearly described by applying the operator $2 twice, but with the proviso that 
we must include a statistical weighting factor (or multiplicity) of ½, to avoid 
counting pairs twice. The resulting contribution to the wave function is thus 
1 2 ~$2]~o). This process of independent pair excitation out of the Fermi sea may 
be continued to obtain a contribution (1/m !)S~'[ ¢0) for the amplitude describing 
the excitation of m independent pairs. Using the superposition principle we get 

a t  - , b \  : ~ - -  , /  , - 

Fig. 4. Excitations out of the Fermi sea 

h _,T ,F 
t T I I I 
I I I J I 
; _- , ; , , ; , ,~ ,  

~ l l  1 

d \  e -  • j 
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the total amplitude 

1 
~.v S~'I4"°> = exp(S2)14"o>. (23) 

m = 0  

Continuing in this way, we next imagine the simultaneous excitation of three 
particles, as in Fig. 4d, which will be described by a contribution $314"o>. 
Similarly there will be a contribution (1/n!)S'~]4"o> from the simultaneous 
excitation of n independent triplets. Next, we can also imagine the simultaneous 
excitation of  m pairs and n triplets all independently from each other, with an 
amplitude (1/n!m!)S'~S'~[4"o >. Note that the operators $2 and $3 commute since 
they describe independent processes. Summing over all n and m we arrive at 
exp(S2 + $3)[4"o> as contribution from all pair and triplet excitations. Proceed- 
ing in this way with the excitation of  clusters of 4, 5 , . . . ,  N particles we arrive 
at a wave function exp(S2 + $3 + " "  + SN)14"o>. But it also may happen that 
during the interaction of  any subset of particles only one of  them is finally lifted 
out of the Fermi sea. Also any number of  single particles may independently be 
promoted out of  the Fermi sea. As before we are led to describe this process by 
a n  operator exp(Sl)[4"0 >, where S~ acts on 14"o> to produce a single "particle- 
hole pair" (or excitation) on the Fermi sea. This particular case has a special 
meaning provided by the Thouless theorem [16]. It states that the most general 
determinantal wave function 14";> not orthogonal to a given Slater determinant 
[4'0 > has the form exp(S0]4"0>. In other words the effect of the independent 
elevation of single particles is equivalent to changing the single particle orbitals. 

We thus arrive at the wave function [~u > = e x p ( ~ = ,  S,)[4"0 >, together with 
a physical interpretation of both the exponential form and the individual 
operators Sn. 

4. Final remarks 

I have stressed very much the exponential structure. But equally important is of 
course the idea to directly compute the amplitudes in it. We all know that this 
cannot be done exactly. Approximations have to be made. One of the strength's 
of  the CC method is that it leads to fairly unique truncation schemes, certainly 
for hard core potentials and to a lesser degree also for smooth potentials. There 
is one important aspect - for fermions often supported by numerical evidence - 
that a sum of terms growing out from one term through antisymmetrization 
should be kept together, i.e. taken along or thrown away together. The sum of 
all those terms often is much smaller than each individual term. One cannot 
always live up to this ideal of taking along them all, because certain multidimen- 
sional integrations or corresponding summations cannot be performed. A judi- 
cious choice of  the terms neglected typically will suffice, since in a systematic 
approximation the "questionable" terms will anyway be small. To make these 
remarks less abstract let me refer to our nuclear physics calculations: for evident 
reasons we could not include all four body terms. But those we could take along 
individually were of the order of 1% of the total energy, and their sum - due to 
the antisymmetrization - was of the order of  only 0.2%. The remaining untreat- 
able terms could be estimated to be again of the order of 1%. The net result was 
that the four body terms were 1% corrections, but we could not reliably calculate 
them. For the chemists it should be said that for nuclei this is an extremely high 
accuracy. 
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The least understood aspect of the CC method is the question of conver- 
gence. All indications are that one has at most asymptotic convergence. Jouko 
Arponen [17] will say something about it. I myself recall some lively discussions 
I had with Fritz Coester on this topic. One of them ended with his remark: "I 
don't understand why the CC method is successful. It should not work". 

The problem is that rigorous mathematical analysis at present is possible 
only in one dimensional systems. Conclusions drawn from this taken over to 
many degrees of freedom very likely are wrong. I guess that they are too 
pessimistic. Especially the antisymmetrization for fermions reduces the total size 
of sets of terms as mentioned before. I have no idea how one could get a firm 
mathematical grip on this phenomenon. But the same applies to all perturbative 
methods I know about. Of course, I believe that numerical evidence for conver- 
gence justifies the application of the method. 
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